
Lento
Programming Language

Specification

Author William Rågstad

Date 2023-10-03

Abstract
This specification describes the Lento programming language's syntax, structure, and
implementation design.

Lento is a general-purpose, strong, statically typed, and functional programming language
designed to purify the object-oriented paradigm.
The Lento toolchain supports interpreted and compiled execution environments running on
modern target platforms such as Windows, Mac, and Linux. The Lento project also aims to
support compilation to WebAssembly.

Hygienic macros can extend the language in various aspects, such as syntax and
semantics. However, Lento also supports third-party runtimes or VMs using custom compiler
backends, offering a rich set of interoperable libraries and applications. Therefore, Lento is
the optimal high-level language to learn, as it will allow you to extend your knowledge across
many application areas in just one language.

For the moment, an official interpreter is developed using Rust.

1

https://github.com/lento-lang/Lento-Core

Table of Contents

Abstract 1
Table of Contents 2
Introduction 5

Our Values 5
Methodology 5
A Good Type System™ 5
A Pure Paradigm 5
Exception Handling 5
Target Audience 6
Community 6

Language Design 7
Variables 7

Identifier 7
Immutability 7
Mutability 8

Functions 8
Semantics 8
Function body 8
Declaration 8

Type signature 8
Named functions with single expression 8
Named functions with body 9

Invocation/Application 9
Empty parameter tuple 9

Function variations 10
Currying 10

References 10
Code blocks 10

Return 11
Comments 11
Documentation 11
Lambda Expressions 11
Zero-Cost Abstractions 12
Decorators 12
Classes 13
Protocols 13
Objects 13

Class 14
Modify 14
Fields 14
Methods 15

2

Static 15
Destructuring assignment 15

Pattern Matching 16
Match statement 16
Cond statement 16
The is Operator 17

Other Keywords 17
Return 17
Type 17
Enums 17

Iterators 18
More operators 18

Concurrent Model 18
Synchronous Channel 18
Asynchronous Channels 18

Type System 20
Dependent types 20
Hierarchy 20
Primitive Types 20
Collection Types 21

Tuples and Vectors 21
Maps 22

User-defined types 22
Type Inference 22
Type Conversion 23
Type Safety 24
Examples 24

Macro System 25
Hygiene 25
Phases 25
Syntax 25
Extensibility 25
Examples 25
Limitations 25
Best Practices 25

Modules 25
Namespaces 26

Modules 26
Garbage Collector 27

Supervisor aware 27
Sweep stage 27
When to dispose? 27
Program exit 28

The standard library 29

3

System 29
Standard Library 29
Core Library 29
FFI 30

Configuration 31
Execution 32

Entry point 32
File extension 32
The Interpreter 32
The Compiler 32

Backends 32
The Package Manager 33

Tooling 34
Ecosystem 34
Main Points 34
Embedded Runtime 35
Compiler Plug-ins 35

Language Comparison 36
Naming Conventions 37
Branding 38

Background 38
Logotypes 38

Mockup Code 39
Hello, World! 39
Pies and Books 39

License 40

4

Introduction
This chapter delves into the foundational principles and design methodology behind Lento. It
aims to provide insights into the language's purpose, ideals, approach to type systems, error
handling, and the target audience and relationship to the developer community.

Our Values
Lento strives for elegance, conciseness, and a high level of expressivity, fighting against
redundancy and boilerplate code. We also value simplicity and readability. For example, the
ability to use compact mathematical notation via overloaded Unicode operators and macro
systems should appeal to the perfectionist programmer. Who values craftsmanship and
pragmatism in shaping code and reliable software architecture.

Methodology
The methodology behind Lento is a harmonious blend of theoretical rigor and practical utility.
It adheres to a functional paradigm, enhancing machine-level efficiency and human-level
comprehensibility.

A Good Type System™
The power of a language comes from its ability to support the developers in their work. This
is why new programming languages should implement this capacity. Lento does this
correctly: the type system is strong and static, but most importantly, it has a good type
inference engine, directly reducing the amount of code required and the burden on
developers.

A Pure Paradigm
Lento's design philosophy embodies a unique blend of paradigmatic purity and pragmatic
flexibility. Its commitment to a functional paradigm, characterized by lazy evaluation and
strong, static typing, serves as both an optimization strategy and a philosophical stance on
computational epistemology. These features aim to enhance human cognition and machine
computation, positioning Lento as a sharp programming tool and a medium for intellectual
expression.

Exception Handling
It might be surprising that we bring error and exception handling up this early. However, this
is a central concept and design principle in Lento.
Unlike some languages, it avoids traditional try-catch exception handling.

Lento instead favors type-based status indication. More purely, using a return type specifying
the status of an unsafe operation. Setting the result status of a function can be done utilizing
enums or atoms, for example. Take a look at the practical example below.

5

enum AddStatus = Success | AdditionFailed // Enum

add : int, int -> AddStatus

type SubStatus = :Ok | :SubtractionFailed // Atoms

sub : int, int -> SubStatus

(Function body is intentionally left out in this example.)
Consider adding a handler function for error cases for larger projects where an unsafe
operation is often used.

Target Audience
Lento is designed to be used by a range of people, from beginners to professional software
developers. Its strong type system and functional paradigm, readable syntax, and friendly
compiler make it particularly pleasant for any programmer but also appealing to intellectually
curious developers who value paradigmatic purity and pragmatic flexibility. At the same time,
its pragmatic features and extensibility make it accessible for developers working on
complex, real-world applications, thereby broadening its applicability across various domains.

Community
Inspired by TypeScript and Haskell.
Lento should have a close relation with its users being developed open-source on Github,
enabling users to give immediate feedback on features and report bugs, as well as following
the development of the language.

6

Language Design
The language design is inspired by C#, F#, TypeScript, Haskell, Ada, OCaml, Elixir, and Rust.

Variables
Variables are differentiated from functions and are immutable per default.
Variables are parameterless functions. Referencing a variable in code will be the same as
invoking the variable as a function.

x = 10 // Constant (inferred integer)

y: string = "Foo"

mut z: char = 'A' // Mutable variable

z = 'B' // Re-assignable with value of the same type

Using the variables

println y + z + x // Prints FooB10 to the console

Function calls do not require surrounding parenthesis.

Identifier
A variable is an identifier of the following pattern: [\w_]+[\d\w_]*

snake_case

numbers123

PascalCase

UPPERCASE

camelCase

snake_case

_1

If a variable name begins with an underscore, it is interpreted as a “match everything”/ignore
in assignments and pattern matching. Thus, it is not saved in the environment.

Immutability
Because a variable is not itself a data structure but more like a memory cell, we are only sure
that one type of data structure fits in there, one at a time. Therefore, we can only read- and
write to that variable if it is the same type. For a memory cell, that’s ones and zeros, but in
Lento, we can write anything with the same type declared for the variable.
Any other data structures in Lento are fully immutable.

7

Mutability
In some cases, variables must be able to mutate to allow for different types of logic. That is
why we decided to support a keyword called mut, which enables a variable’s value to be
reassigned in the same or a nested scope without creating a copy but performing the change
in place. This is inspired by Rust.

Functions
Functions are located in a separate register in the environment. Functions are stored in a
separate list in the application environment (Elixir?).
Invoked using trailing parenthesis and arguments. All function declarations support pattern
matching in their parameter list.

Semantics
Function declarations can have parameters with surrounding parentheses, same with
function invocation providing arguments. A function might have an explicit type signature
unless it is inferred. Functions are denoted as a function name, parameter vector, equal sign,
and function body. Functions may have multiple declarations for different parameter list
matches. All of which must share the same return type. Therefore, using a processing type
signature is good practice, which enforces the varying functions to return the same types.
Unless a type signature is given, the first function declaration will control what will be the
shared return type.

Function body
A function body is a single expression or a sequence of statements surrounded by curly
brackets, this is a code block.

Declaration
Functions are overridable, meaning the most recent declaration of a function with a matching
parameter list will be used. This is the same for variables, where any variable can be
reassigned.

Type signature
A function may declare an explicit type signature to specify a formal function interface. This
could also be inferred.

The signatures for parameterless functions are simply nothing. They are only generating
output and are denoted like:

sayHi : () -> string

sayHi() = "Hi"

Named functions with single expression

myAdd(a: int, b: int) -> int = a + b

8

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#variables-and-mutability
https://wiki.haskell.org/Type_signature

myAdd(a: int, b: int) = a + b // Implicit (infer) return type

Function with type signature (similar to Haskell). The last int shows the function return type.

myAdd : int, int -> int

myAdd(a, b) = a + b

Named functions with body
A function body is a sequence of statements and expressions surrounded by curly brackets.

myAdd(a: int, b: int) -> int {

c = a + b

return c // Explicit return value

}

Invocation/Application
Function applications are done by specifying a function identifier and any parameters
separated by whitespace. This is called function application by adjacency, applying a function
to one or more arguments.

myFunc 1 "hello"

Function application can also be formatted using a direct trailing tuple for each parameter.

myFunc(1, "hello")

The elements in the parameter vector tuple will be mapped to the function's arguments.
Listen to why Anders Hejlsberg says this might be useful in his TSConf 2019 Keynote.

A space between the function identifier and the tuple indicates that the tuple is passed as a
parameter to the function. This means the line below would throw an error for the same
function used in the previous example.

myFunc (1, "hello") // Invalid Parameter Type

Empty parameter tuple
Because the function name itself acts as a reference and can be passed around, function
variants with zero arguments must be passed the zero tuple ().

Functions with no arguments cannot be invoked without trailing parentheses.
This is to avoid any ambiguities regarding function referencing and application.

For all other function arities, the parameters may be passed without surrounding parentheses
and separated by spaces instead of commas.

9

https://youtu.be/jmPZztKIFf4?t=2083

Function variations
If a function has multiple overloaded definitions. The first function variation that successfully
pattern matches arguments to the parameter signature will be invoked. Otherwise, a new
curried function will be returned, taking the rest of the arguments. The first least matching is
the method to select which declaration to use to curry. This means that if a function
declaration takes n parameters, and the function is given arguments, where . If𝑚 𝑚 < 𝑛
those number of arguments successfully match with parameters of that declaration (from𝑛 𝑛
top to bottom), that function will be curried and returned.

A function cannot have two declarations with the same parameter vector! This
breaks the matching property as the first occurrence will always match, and
this is therefore omitted from the language as is seen as an error.

Currying
Functions are using currying. If a function gets partially applied to a set of parameters, it
returns a new function, taking the rest of the defined parameters.

myFunc2 : string -> string

myFunc2 = myFunc 1

myFunc2 "hello" // This is ok!

References

zero : int

zero() = 0 // same as zero = 0, aka a variable

add : int, int -> int

add a b = a + b // arity of 2

other(zero)

other(&add) // Because add is a function with arity > 0, we need to

reference it using the & operator to show that we are not invoking the

function

Code blocks
A code block is a sequence of statements surrounded by curly-braces {}, containing zero or
more return calls to produce a final result value (unless it is void) and return to the default
code branch. A code block will always return the value of the last statement or expression
unless any return statements are present. The statements in the block may be inlined using
a separating semi-colon ‘;’ (like all C-like languages).

stms = { a = 21 * 2; sq(x) = x * x; sq a } // 1764

10

https://en.wikipedia.org/wiki/Currying

Return
The value returned by the code block is, per default, always the result of the last expression.

result = {

a = cond {

10 - x > 5 -> true

2 * x < 100 -> false

true -> false

}

!(false || a) // This expression is what is returned by the block

}

A return statement may be inserted before the expression on the last line to clarify that the
value is indeed returned, but this is otherwise unnecessary. Return is a built-in macro that
sets the return value of the context and immediately exits. The purpose of this keyword is
mainly to give developers control over the program's flow of execution. Read more about
return and other similar keywords like break and continue.

Comments
Single-line comments are denoted by a //. Or alternatively, a multi-line comment beginning
with /* and ending with */.

Documentation
Documentional comments describe code functionality on a more general level (function or
module). They are denoted by some lines starting with ///.
An example doc-comment looks like the following:

/// Description: A function that adds two numbers together

/// Param(a: Num): First number

/// Param(b: Num): Second number

/// Returns: The sum of the two numbers

add : Num, Num -> Num

add a, b = a + b

Lambda Expressions
A lambda expression is an unnamed or “anonymous” function. They are higher-order
functions not stored in the environment. The declaration for a lambda function follows the
pattern: parameter vector followed by a thick arrow and, lastly, a single expression or code
block. The parameter vector could be formatted just as a normal function. The only difference
is that the lambda expression type is denoted using a surrounding ().

myHello : (string -> string), string -> string

myHello(nameGenerator: (string -> string), title: string) =

11

"Hello " + nameGenerator(title)

greeting = myHello((title: string) => title + "William", "Mr. ")

greeting // Hello Mr. William

Lambda functions are invoked just like all other functions, unlike other languages such as
Elixir. This is for the sake of continuity and cohesion.

If an anonymous function is assigned to a named variable, the result is a regular function. It
has the same type signature (without the extra ’()’)

myHello : () -> string

myHello() {

return "Hello"

}

myHello // Reference to function

myHello() // “Hello”

Or with no surrounding parentheses and single statement body.

myHello: string -> string = (name) => "Hello " + name

The code below is not a lambda function but a regular one.

myHello(name: string) -> string = "Hello" + name

Both functions are invoked as shown below.

myHello "Bob" // “Hello Bob”

myHello("Bob") // “Hello Bob”

Zero-Cost Abstractions
We’ll later talk about concepts mentioned in this chapter. Lento aims to be a pure functional
language but still behave similarly to general-purpose mainstream languages. With this goal,
some constructs must be implemented using immutable design hidden under a level of
abstraction with an interface that looks and feels ergonomic.

Decorators
Function decorators change the behavior syntactically and/or logically.
Decorators are macros behind the scenes.
They work similar to decorators in Python.

decorator Infix<T1, T2> Function operator {

register [T1, operator.Name, T2]

transform AST expr {

return [operator.Name, T1, T2]

}

}

12

@Infix

+ : Num n => n, n -> n

Num + lhs rhs = Kernel.add(lhs, rhs)

Console.WriteLine 5 + 10 // Invokes +(5,10) -> Kernel.add(5,10) -> 15

Classes
Define a new object structure protocol.
A classification for object structures instantiated by the class. All objects are value-based,
i.e., non-referenced. A class can implement a predefined protocol.
Classes may inherit from other classes.

class A : B {

// A now contains the fields and methods in B

}

A == B // false

Protocols
A specification of data structure requirements. A protocol accepts any data structure or object
instantiated by a class containing all required fields or properties.

Objects
Lento should support syntactic sugar for creating classes (structs) and objects.
Inspired by Object Initializer in C#.

class Car {

// Fields

Brand: string = :unknown,

int Model, // Use null as default

int Speed: 0

}

// Methods

Car Car.New string brand = Car{

Brand: brand,

Model: 1

// Use default Speed value

}

Car Car.Drive Car car, int speed = modify car {

Speed: speed

}

string Car.BrandModel1 Car car {

13

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-initialize-objects-by-using-an-object-initializer

Car { Brand: brand, Model: model } = car

return brand + model

}

string Car.BrandModel2 Car{ Brand: brand, Model: model } = brand + model

// Pattern matching

string Car.BrandModel3 Car car = car.Brand + car.Model // Access class

map fields

Car car = Car.New("Volvo") // Hides class instantiation

car.Drive(50) // Syntactic sugar for the statement below

Car.Drive(car, 0)

car.Brand // "Volvo"

car.BrandModel1 // "Volvo"

car.BrandModel2 // "Volvo"

// Structs can also be immediately created from a class

Car car2 = Car {

Brand: "Fiat",

Model: 2,

Speed: 5

}

In this code example, we specify a new class for objects/structs which provide a set of two
public methods. There are no static keywords as in C# or Java due to all functions being
pattern-matched with the passed parameters thus all functions are static by default. If there is
a function/method in a class body that takes a reference to a class instance as its first
argument, it will be callable using the . syntax. This means you can write an instance,
followed by a dot, followed by the method that takes (a reference to) a struct/object. This is
shown in the last two lines in the example.

Class
Defines a new object structure protocol.

Modify
Takes an instance and returns a modified copy with just the specified fields updated to new
values.
Works like partial types in TypeScript.

Fields
All fields in a class are public, meaning they are accessible on objects using dot notation. The
reason for this is that you don't have to write getters for each field, and because they are
immutable there is no reason not to expose them.
See Car.BrandModel3 for example.

14

Methods
Each method has an inferred return type of the parent class unless anything else is
specified. All public methods must return a new or modified structure of the class described.

All methods act like extension methods to an object or protocol, similar to the C#
implementation.

Static
Every method in a class is per default static. But if a method on a class takes an object of
that class as the first argument, you can use dot notation to pass the object as the first
argument to the method call and the rest of the arguments are written as parameters to that
method call.
See Car.Drive for an example.

Unless a method on a class doesn’t take an instantiated object as the first argument, then the
method is only accessible from the class using dot notation as well.
See Car.New.

These types of methods are called static methods and specify that the function is only
accessible on the class itself and not objects instantiating the class. These are most used
when creating custom constructors. Static methods are functions that don't take a class
object as the first argument.

Destructuring assignment
Classes are destructively pattern-matched, as shown in the example below.

Car car = Car.New("Volvo")

Car { Brand: brand } = car

brand // "Volvo"

// or using the get methods

car.GetBrand1() // "Volvo"

car.GetBrand2() // "Volvo"

15

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

Pattern Matching
A mechanism for checking a value against a number of patterns. It is a much more readable
and expressive shorthand for conditional branching.

Match statement
Pattern matching is mainly facilitated through the match construct, which takes an expression
and compares it against multiple patterns until it finds a matching one defined in its body. The
code follows each pattern clause to execute if the pattern matches. Patterns can also have
guards specified by the when keyword, which must also be true for the match to be
successful. Keep in mind errors in guards do not leak but simply make the guard fail.

match x {

1 => "One",

2 => "Two",

_ => "Other"

}

In the example above, the variable x is matched against the patterns 1, 2, and _ (wildcard). If
x is 1, it returns "One"; if x is 2, it returns "Two"; for any other value, it returns "Other".
Or using larger records/objects.

match {1, 2, 3} {

{4, 5, 6} => "This clause won't match",

{1, x, 3} when x > 10 => "This clause won't match, x = 2 < 10",

{1, x, 3} => "This clause will match and bind x to 2",

_ => "This clause would match any value"

}

// -> "This clause will match and bind x to 2"

https://elixir-lang.org/getting-started/case-cond-and-if.html

Cond statement
The condition statement is a subset and alias for the case statement. The logic is limited to
the true boolean instead of matching any value. Every clause will be evaluated; if the result
matches with true, that clause is evaluated, and the condition returns.

cond {

1+1 == 3 => "We live in a simulation",

true => {

// This will always match, like ‘else’

return 42

}

}

cond !false == true => "Always true" // One-liner

16

https://elixir-lang.org/getting-started/case-cond-and-if.html

A condition with only one clause can be inlined as seen above. This will return null if the
expression does not match or is not evaluated to true.

The is Operator
The is operator in Lento serves a dual purpose: it destructures a value and performs a
conditional check. This is similar to the if let construct in Rust but is more flexible as it allows
for multiple instances in a single if statement. If all instances match, the if block is executed.

x: Option<int | bool> = // Code ...

if x is Some(y) and y is int and y > 10 {

// This block will execute if x is Some(y) and y > 10

println y

}

In the example above, x is destructured to y, and a conditional check y > 10 is performed. If
both conditions are met, the code inside the if block will execute.

Other Keywords
With keywords, we do not mean the hardcoded overloadable keywords you see in other
languages. Instead, keywords are prepackaged functions in Lento but may be overloaded
with a simple function or macro declaration in your code.

Return
The return keyword does whatever you expect it to do. It returns from the current context with
no or a single value. The function sets the return value “register” and exits out of the code
block. Read more about the return.

Type
Custom types are created using the type keyword.

type Numeric = int | float | decimal

add : Numeric, Numeric -> Numeric

add a b = a + b

Enums
An enum is a type specification that limits the value to a set of given unique values.

17

Iterators
For an object to be an iterator, it must implement the standard Iterator protocol. This
ensures that you can call a .next() method on it, returning a value and an indicator for
whether the loop shall continue after or if the method simply returns null.
There will be an operator ‘in’ that gives iterators a more concise syntax. It may look
something like this

list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for value in list {

println value

}

More operators
http://hackage.haskell.org/package/cond-0.1/docs/Control-Cond.html
https://elixir-lang.org/getting-started/case-cond-and-if.html

Concurrent Model
Message passing between processes, should support network abstraction.
Inspired by Elixir and C#.
Modified Asynchronous Communicating Sequential Processes (ACSP), meaning
messages are sent through channels, and a process can choose to read a message from
one or more channels.

Synchronous Channel
This will be the “main” channel for the process.

println "Receiving..."

match receive self {

{:msg, message} -> println message

_ -> println "No message received!"

}

println "Sending"

send self {:msg, "My message"}

println "Done"

Output:

Receiving...

-> Stuck in infinite loop

Asynchronous Channels

println "Receiving..."

18

http://hackage.haskell.org/package/cond-0.1/docs/Control-Cond.html
https://elixir-lang.org/getting-started/case-cond-and-if.html

match receive :channel1 {

{:msg, message} -> println message

_ -> println "No message received!"

}

println "Sending"

send :channel1 {:msg, "My message"}

println "Done"

Output:

Receiving...

Sending

My message

Done

19

Type System
Inspired by Haskell, C#, and TypeScript.
Nominal type system.
Allows for specifying new type aliases and custom type formats and how they are stored in
binary, classes, generics, structs, tuples (varying length), and maps.
It follows a parametric polymorphism.

Dependent types

Hierarchy
1. U - The universal type of all types.
2. any - The any-type.

Primitive Types

Type Description Syntax Identifier

Atom An atom :\w[\w\d]* -

Binary Bit sequence [01]+b -

Int 32-bit integer \d+ int

Long 64-bit integer \d+ int64

long int 32 + 64 int96

long long 64 + 64 int128

Float IEEE Floating point number.
Single precision.

\d*.\d+ float

Double Double precision. float64

Decimal 128-bit floating point. float128

20

https://en.wikipedia.org/wiki/Parametric_polymorphism

Collection Types

Type Description Syntax Read
complexity

Space
complexity

Vector/
Tuple

An array of elements with a fixed
length and fixed positions. It is
possible to index into.

(a, b, c, ...) 1 using pattern
matching and
indexing

N

List Linked list or varying length but
fixed positions using tuples. It is
possible to index into.

[a, b, c] 1 using pattern
matching.
N when
indexing.

N

Map Hashmap of varying length and
floating positions.
See Associative array and Elixir
map.

(a: A, b: B) log N N

Container objects are created dynamically and are considered value-based data
types/structures.

https://www.jeremyshanks.com/c-variables-primitive-nonprimitive-types/

Tuples and Vectors
The difference between tuple and vector definitions is the context. It is often called a tuple
when dealing with set theory and a vector in mathematics. But in theory, they are
representing the same core concept. “Mathematicians usually write tuples by listing the
elements within parentheses "()" and separated by commas” and similarly “a vector in
can be specified using an ordered set of components, enclosed in either parentheses or
angle brackets.”

In Lento, a tuple or vector is a fixed-size data structure passed by value and located on the
stack, while a vector in Lento is a cons-list (linked list) on the heap.
An interesting use case for tuples may be in functions returning multiple values; see the
example below.

enum Status = Succeeded | Failed

myFunc : int, int -> (int, Status)

myFunc a b = (a + b, Status.Succeeded) //This may be an error-prone

operation

Here, the type of each element in the return tuple is directly inferred from the function type
signature. This could be inferred as well for variables, for example.

myVar = (10, Status.Succeeded) // Inferred type: (int, Status)

Or explicitly.

(int, Status) myVar = (10, Status.Succeeded) // Explicit

21

https://en.wikipedia.org/wiki/Associative_array#Comparison
https://hexdocs.pm/elixir/Map.html
https://hexdocs.pm/elixir/Map.html
https://www.jeremyshanks.com/c-variables-primitive-nonprimitive-types/

Lists
In Lento, a list is a variable-length data structure that can hold any number of elements of
possibly different types. It is implemented as a linked list (or cons-list), and elements are
typically allocated on the heap.

myList : [string] = ["Hello", "world"]

myList.push "!"

println myList.join(" ") // Hello world !

Maps
In theory, a map is a tuple with named elements.
A map could be created in many ways. Using implicit type inference for each element, or
explicit, a type signature or not.
All keys in a map must be unique, and value types may vary.

myVar = (value: 10, status: Status.Succeeded)

// Inferred type (implicit): (a: int, b: Status)

Or explicitly.

myVar : (status: Status, value: int) // Explicit

myVar = (value: 10, status: Status.Succeeded)

User-defined types
Lento, like many other strongly typed languages, allows users to declare their types using
rich, expressive notation.

type Day = Number in 1..31;

enum Weekday = Monday | Tuesday | Wednesday | Thursday | Friday |

Saturday | Sunday;

type Hours = Number in 0..24;

Type Inference

In Lento, type inference analyzes the types of expressions and variables to deduce the types
of other expressions and variables automatically. This eliminates the need for explicit type
annotations in many cases, making the code more concise while maintaining strong type
safety.

Basic Inference

x = 42 // x is inferred to be of type Int

y = x + 1 // y is also inferred to be of type Int

Implicit Function Return Types

22

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Cons

add(a, b) = a + b // Return type is inferred based on a and b

Conditional Statements

z = if x > 0 then x else -x // z is inferred to be of type Int

Collections

arr = [1, 2, 3] // arr is inferred to be of type List[Int]

Coercion with Explicit Types

a: Float = x

// a is explicitly typed as Float, x (Int) is coerced to Float

In cases where type inference encounters ambiguity or conflicting types, it typically raises a
compile-time type error, prompting the developer to provide explicit type annotations to
resolve the conflict. By leveraging type inference, Lento aims to balance simplicity,
conciseness, and type safety, reducing boilerplate while ensuring robustness.

Type Conversion
Other names include type coercion, casting, conversion, or mapping. These serve as the
canonical methods for directionally converting between types.

There are failable downcasting in Lento, these do not return a value directly, but an option
with some value if it is successful. These concepts also exist in other languages like Java:

23

In Lento, this is denoted by wrapping the value in a call to the destination type. All values
cannot be converted between any types. Thus, these coercions are statically checked. There
is built-in intrinsic support for basic primitive types.

x: int = 42

y: float = x // Implicit conversion from int to float

z = float(x) // Explicit conversion from int to float

Type Safety

Examples
1. Type Conversion: Provide examples of implicit and explicit type conversions, if

applicable.
2. Polymorphism: If Lento supports any form of polymorphism, describe how it works

and provide examples.
3. Type Matching: Since Lento has pattern matching, show how types can be used in

this context.
4. Error Handling: Demonstrate how the type system interacts with your error-handling

mechanisms.

24

Macro System
Lento's powerful hygienic macro system allows for advanced code transformation rules,
enabling users to write more expressive and concise programs. It is a feature for vastly
extending the language's capabilities. (DSLs, Infix operators, keywords, etc...)

Hygiene
This ensures the prevention of variable capture and naming conflicts in macros behave
consistently and predictably.

Phases
Lento's macro system operates during the post-process phase. The entire file is parsed into
an Abstract Syntax Tree (AST) before any macro transformations occur. This approach offers
a unified view of the code, aiding in more accurate transformations.

Syntax
Macros in Lento have a specific syntax for both definition and invocation. This syntax is
designed to be expressive and unambiguous, facilitating ease of use and minimizing potential
errors.

Extensibility
One of the most powerful features of Lento's macro system is its extensibility. Users can
define new infix operators, keywords, and other syntactic constructs, tailoring the language to
specific needs or domains.

Examples
To aid comprehension and practical usage, the specification will include concrete examples
demonstrating the versatility and power of macros in Lento. These examples will cover
common use cases and advanced scenarios.

Limitations
While macros offer extensive capabilities, they have limitations, such as potential complexity
and debugging challenges. Users should be aware of these caveats to employ macros
judiciously.

Best Practices
The specification will provide guidelines on best practices for macro usage. These
recommendations aim to help users utilize macros in a manner that enhances code quality
and maintainability.

25

Modules

Namespaces
Everything is located in the root namespace

Modules
Module packages must have unique identifying module names. There could be multiple
module declarations in the same file.

mod my_first_module {

// Declare the following code as a module
a = 1

}

mod my_second_module {

// Declare the following code as a module

b = 2
}

Two packages can share the same namespace but with unique module names. I.e., import
Core.Generics.List and import Core.Generics.HashMap. These would share the
Core.Generics namespace but import different classes from the Generics module.

26

Garbage Collector
Because Lento aims to be as pure functional as possible, meaning that we don’t need
references. Objects are sent as values, and methods are static functions taking this struct,
and returning a new modification.

The purpose of a garbage collector in most other object-oriented languages is mainly to
clean up any memory with objects without any references to it. This is not the case for
Lento; on the other hand, we might want to add any behavior to Lento that moves away
from the fully pure functional paradigm a bit, meaning this might be a feature added
anyways to support a certain syntax or control flow in the future.

Supervisor aware
This means that each data structure stored in memory occupies a section starting from a
certain address. This system uses an 8-bit header that specifies how many references that
particular object has. When a supervisor removes its reference to that part of memory, the
value is decreased and a small GC adds that part to the free-memory block list or gives it
back to the operating system.
For supervisors to know when they should stop referencing other parts of memory, we use
the Dispose functions. This enables us to tell the runtime/system when we are done with
different parts of the memory. These dispose function calls are abstracted away from the
regular user and are handled by the compiler to generate code that frees the memory
location of a, e.g. re-assigned variable value.
This method is used instead of the mark stage in a regular mark-and-sweep garbage
collector.

Sweep stage
Because we use a top-down approach instead of a backtrack reference lookup approach.
The sweep stage becomes a lot simpler, only requiring us to add parts of the memory that
have no current supervisors to the free memory list, meaning nothing in the program is
referencing that object anymore and has been disposed of. This can, therefore run
concurrently with the main thread and never interrupt the execution to stop for garbage
collection suddenly. Instead, the main thread marks the parts in memory when a supervisor
frees its reference. If the total number of supervisors for a memory block is zero, the garbage
collector could either directly add it to the free memory list or make a single pass over the
whole memory later, collecting every free memory section.

When to dispose?
There are several suitable occasions to dispose of memory references, most listed below.

● Variable reassignment
When a variable is reassigned, the previous value is no longer used.

27

● Function return
After a function returns, the local scoped variables will no longer be used.

Program exit
After the main thread of the program process finishes, all references to any memory are
released.

28

The standard library
This section describes the standard library, which is a collection of pre-defined functions and
modules that are available to all programs written in the language. Several different modules
provide different kinds of features, such as system, std, core, and ffi-logic.

System
Contains modules with functions for interacting with the local operating system. Example
modules would be:

● Memory
● Processes
● Threads
● File system I/O
● Network I/O, Sockets
● Debugging
● Environment variables

Standard Library
The standard library serves as the cornerstone of cross-platform Lento applications, offering
a minimal yet robust set of shared abstractions for the wider Lento ecosystem. It provides
core types, along with library-defined operations on language primitives, standard macros,
I/O handling, concurrent processing, and multithreading capabilities, among additional
features. The standard library is available to all Lento programs by default.

● String formatting
● Serialization/Deserialization

○ JSON, XML, HTML
● Command-line arguments parsing
● SSL/TLS/HTTPS protocols
● Console

Core Library
The Lento Core Library is the foundational layer of the Lento Standard Library, free from
external dependencies. It serves as the essential bridge between the Lento language and its
libraries, defining the basic building blocks of all Lento code. This library is self-contained,
requiring no external, system-specific, or C-standard libraries.

The Core Library includes kernel functions that underlie standard built-in operations. For
example, the addition operator "+" is implemented as a function that calls the core "add"
function. The library is also commonly used when building macros. Despite its minimal scope
and lack of features like heap allocation, concurrency, and I/O, it remains platform-agnostic.

● Iterators
● Generators
● Streams
● Regular expressions

29

● Math
● Cryptography
● Date and Time
● Compression
● Reflection and meta-programming

FFI
This module exposes low-level C-ABI function interoperability and adds support for loading
dynamically linked libraries. This enables the use of libraries compiled and built using other
programming languages and extends the domain of available libraries for Lento developers.
The FFI module provides:

● Dynamic Library Loading: Support for dynamically loading shared libraries (.dll, .so,
.dylib) at runtime.

● C-ABI Compatibility: Ensure compatibility with the C Application Binary Interface
(ABI) for seamless integration with C libraries and other languages that can interface
with C.

● Function Binding: Facilities for binding to external functions, specifying their
signatures and calling conventions.

● Type Mapping: Automatic and custom mapping between Lento types and foreign
function types, including primitives and complex structures.

● Memory Management: Utilities for allocating and deallocating memory in the foreign
language, with hooks for Lento's garbage collector.

● Error Handling: Robust error handling mechanisms for dealing with failures in foreign
code, including exceptions and return codes.

● Thread Safety: Features to ensure thread-safe calls to foreign functions, aligned with
Lento's concurrency model.

● Data Marshalling: Utilities for marshaling complex data types like arrays, structs, and
unions between Lento and foreign code.

● Inline Assembly: Support for embedding inline assembly code for
performance-critical sections, if applicable.

● Safety Checks: Compile-time and runtime checks to ensure type safety and
adherence to calling conventions.

● Performance Tuning: Tools for profiling and optimizing the performance of FFI calls,
including caching and lazy loading.

30

Configuration
All projects may contain a single config file specifying information, scripts, pre-process and
post-process stage execution.

31

Execution
Programs are executed by either being interpreted or compiled. If a compiler should compiler
a program, it must first look for an entry point. Unless this is found, the whole program is
executed from top to bottom like a script.

Entry point
The entry point to a program is a function with the @EntryPoint decorator. There may only
be one entry point to a program. Otherwise, it will be executed as a script running from the
top of the source file to the end. All other functions are seen as subroutines.
Read more about entry points.

Entry points are used in this way by other languages like F#.

https://dotnet.microsoft.com/learn/languages/fsharp-hello-world-tutorial/create

File extension
Use .LT, or .lt, denotes a Lento source file and executes everything line by line unless an
entry point has been explicitly specified in the project configuration file.

The Interpreter
The Lento interpreter will be an official, open-source standard interpreter and
interactive REPL environment for the language.

The Compiler
The Lento compiler will be an official, open-source standard compiler for the
language. It shall be available under a subcommand of the regular lt CLI tool.
An excellent addition would be to support the compilation of DLL files, and exporting
functions for use in other languages or by the system.

Backends

32

Platform Target Method Technology

Cross Platform - Interpreter Rust

Native Code PE (.exe), ELF, DLL Compiler Rust, Cranelift, LLVM?

Web (browser) JS, Wasm Compiler Rust, Cranelift

Third Party (unofficial) .NET Runtime, JVM Compiler Rust, Backend Plugin

https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Entry_point
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/functions/entry-point

The Package Manager
Lento package manager. Provides the service to download and publish code as packages
that can be reused. All code should be published on a Github, Gitlab, or self-hosted
repository, meaning you could upload a package to your website. Packages must be zipped
or single Lento files (that may include other files in the same package or depend on other
packages).
Packages will not be controlled by the manager but only redistributing existing ones hosted
by other services.
The package manager holds a register of known packages. New packages are added with
just a link, title, and description, which adds a new row to the registry.
Users should be able to upvote, downvote, and comment on the package manager website,
and warnings should be shown when installing new packages.

Inspired by the Go, Nim, and Cargo package manager.

A nice touch would be to add support for executing external files from the internet just by
providing a URI link instead of a file location. The same goes for compiling files, this would
make building installers redundant.

33

Tooling
The Lento language ecosystem is designed to provide a comprehensive suite of tools and
services to facilitate the development process. This includes various features ranging from
package management platforms to online playgrounds.

Type Description Priority

Package management
platform, LPM

Like NPM, Hex, NuGet 3

LSP, IntelliSense,
completions

Language Server 5

Linter Per-editor extension 4

Syntax Highlighting Per-editor extension 4

Code completion and
snippets

Per-editor extension 7

Online playground Inspired by TypeScript 2

Ecosystem
The official LPM package manager platform aims to centralize shared modules and features
in the community. This could, for example, be:

- Domain Specific Languages embedded with a runtime and compile-time macros.
Piggybacking on the capabilities of Lento as a toolchain and platform.

Main Points
There is a unique power of utilizing a high-level language combined with a robust package
manager. This combination results in a highly flexible and efficient development environment
that can significantly streamline the software development process.

1. The strength of a high-level language is its ability to abstract complex low-level
operations, allowing developers to focus more on the business logic and functionality
of their applications, rather than getting bogged down in the details of memory
management and hardware interactions. High-level languages are also typically
easier to read and write, which can lead to increased productivity and fewer errors.

2. Package managers automate installing, upgrading, configuring, and removing
software packages. This can save developers a significant amount of time and effort
and can also help to ensure that the software environment is consistent and reliable.

3. The Lento language ecosystem takes this a step further by enabling cross-platform
development when only depending on libc (Linux) or native dlls (Windows) from the
operating systems. All other libraries are native Lento and combined pre-compile-time
in one static bundle. This eliminates the need for linking, which can be complex and

34

error-prone. Instead, all dependencies are resolved at compile time, which can lead to
more reliable and efficient code. Applications can be easily moved between different
operating systems without extensive modifications, saving developers significant time
and effort and making it easier to distribute software to a broader audience, not
ending up in DLL Hell.

In conclusion, combining a high-level language like Lento with a robust package manager
provides a powerful toolset for software development. It allows for greater productivity,
reliability, and portability and can significantly streamline development.

Embedded Runtime
The Lento toolchain also offers a unique feature in the form of easy and accessible SDKs and
API bindings to the Lento core module runtime and interpreter, which can be easily
embedded and integrated into other applications. This feature provides a seamless
interface for developers to use Lento as a scripting language tailored to their specific
application domain (similar to how Lua is used in various applications, from game
development to embedded systems).

All the necessary Lento dependencies, libraries, and modules can be statically embedded
with the runtime and thus included in the application at compile time. This can lead to more
reliable and efficient applications, as there is no need to worry about missing or incompatible
libraries at runtime.

Compiler Plug-ins
- Parser plug-ins? Or macros instead?
- Optimization passes plug-ins
- Backend plug-ins

35

https://en.wikipedia.org/wiki/DLL_Hell

Language Comparison
Lento offers meticulous design, expressiveness, and robust features that set it apart from
other languages. Its unique benefits leap towards a more intuitive, robust, and empowering
coding experience. By choosing Lento, developers become part of a vision for a refined
programming paradigm. Below is a comparative table featuring Lento alongside other notable
programming languages based on various aspects.

This table highlights the unique features of Lento in comparison to other popular
programming languages. Each language has its strengths, and the choice among them
would depend on the specific requirements of your project.

6 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html and
https://niklas-heer.github.io/speed-comparison/

5 https://en.wikipedia.org/wiki/Algebraic_data_type
4 https://chrisdone.com/posts/haskell-doesnt-have-macros/

3 https://en.wikipedia.org/wiki/Programming_paradigm and
https://en.wikipedia.org/wiki/Comparison_of_multi-paradigm_programming_languages

2 https://en.wikipedia.org/wiki/Type_inference
1 https://en.wikipedia.org/wiki/Strong_and_weak_typing

36

Aspect Lento Python Java C# Haskell Rust

Type System1

Static Dynamic Static Static Static Static

Strong Moderate Moderate Strong Strong Strong

Inferred Inferred Manifest Manifest Inferred Inferred

Type Inference2 Yes N/A Limited Yes Yes Yes

Cross-Platform Yes Yes Yes Yes Yes Yes

Multi-Paradigm3 Moderate Moderate Moderate Yes Yes Moderate

Operator
Overloading Yes Yes No Yes Yes Yes

Lazy Evaluation Yes No No No Yes No

Macro System Yes No No No No4 Yes

Error Handling Explicit
Types

Exception Exception Exception
Explicit
Types

Explicit
Types

Zero-Cost
Abstractions Yes No No No Yes Yes

Generic Data
Types5 Yes Yes Yes No Yes Yes

Performance6 Moderate Moderate Moderate High High High

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://niklas-heer.github.io/speed-comparison/
https://en.wikipedia.org/wiki/Algebraic_data_type
https://chrisdone.com/posts/haskell-doesnt-have-macros/
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Comparison_of_multi-paradigm_programming_languages
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Strong_and_weak_typing

Naming Conventions
A well-defined set of naming conventions can significantly improve the readability and
maintainability of code written in a language. Here's a table outlining naming conventions for
different aspects of Lento:

Type of Value Naming Convention Example

Classes PascalCase MyClass

Functions camelCase myFunction

Variables camelCase myVariable

Constants UPPER_SNAKE_CASE MY_CONSTANT

Enums PascalCase TestSuccess, Some

Protocols PascalCase MyProtocol

Types (non-primitive) PascalCase MyType

Modules PascalCase MyModule

Package Names kebab-case my-package

Private Fields _camelCase _myField

Read more about conventions:
https://en.wikipedia.org/wiki/Naming_convention_(programming)

37

https://en.wikipedia.org/wiki/Naming_convention_(programming)

Branding
The current chapter focuses on product branding, including aspects such as logo design,
color schemes, and packaging.

Background
When picking a logo, we thought about the underlying meaning of the word “Lento.” It
translates to slow, careful, and gentle. It is often used as an expression in music. Hence,
we picked the majestic Barn owl, as it reflects on the delicateness of birds, not to mention
wise, skillful, and careful. Being one of the most silent-flying birds.

Logotypes
Font: Numans
Primary colors: #2F292C and #FFFFFF

Main Italic text Only owl

38

https://www.m5music.hk/en/dictionary/lento/
https://www.m5music.hk/en/dictionary/lento/
https://en.wikipedia.org/wiki/Barn_owl
https://www.youtube.com/watch?v=d_FEaFgJyfA&ab_channel=BBCEarth

Mockup Code

Hello, World!

println "Hello, world!"

Or the slightly longer version using a main function as an entry point.

main : [string] -> ()

main (args) {

println "Hello, world!"

}

Execute through the command line:

> lt hello_world.lt

Hello, world!

Pies and Books

type Pie = float in [0, 1]

type Book = int in [0, 2000]

Pie p = 56,7

Book b = 800

2.5 p + 5 b // Error: Cannot add ‘Pie’ and ‘Book’

39

License
The official implementation is open source and licensed under the MIT software license.
MIT License

Copyright (c) 2021 William Rågstad

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

40

