Lento: A Readable, Safe, and Efficient Language
[DRAFT 2026-01-25]

William Ragstad
Independent Researcher

Abstract—The result of decades of programming language
research can become diluted when retrofitted into main-
stream languages. Legacy constraints and compatibility
requirements force compromises that lead to complex and
unwieldy designs. Consequently, redesigning a new modern
language from the ground up is often necessary to fully
leverage state-of-the-art advances in typing, verification, and
compilation. In this paper we introduce a high-level and
work-in-progress vision of Lento, a language designed to
bridge the gap between high-level abstraction and low-level
performance.

Index Terms—Programming Language, Parallelism, Guided
Synthesis, Program Specification, Formal Verification, Liquid
Types, Dependent Types, Session Types, Effect System, Type
Inference

I. INTRODUCTION

Programming languages today often force developers to
choose between high-level abstractions that enhance pro-
ductivity and low-level control that optimizes performance.
This dichotomy has led to a fragmented landscape where
languages excel in one domain but falter in the other.
High-level languages, such as Python and JavaScript, prior-
itize ease of use and rapid development but often sacrifice
performance and compile-time type safety. Conversely,
low-level languages like C and Rust offer fine-grained con-
trol over system resources but come with steep learning
curves, increased complexity, and higher demands on
expertise.

Lento aims to bridge this gap by introducing a novel
programming language while also incorporating the bene-
fits of the pure functional paradigm. Leveraging strong
static typing, lazy evaluation, automated parallelism and
concurrency, user-friendly syntax, and more, to offer several
advantages over existing languages. It is designed to be
safe, performant, and stable while promoting longevity
in codebases.

II. VALUES

In the Lento compiler team we define a fundamental set
of values people developing the language should adhere to.
These extend to the language standard specification and
form the basis for all future features and decisions. Our
standpoints on these values are outlined below and are goals
we strive to achieve in the development of Lento.

A. Longevity

Lento should be a language built to last for decades. We
have learned from the mistakes of others and decide to
support multiple versions of the language (called language
editions') simultaneously. Where libraries in one edition
must be backward compatible and seamlessly interoperate
with those compiled in other editions. Editions with major
breaking changes should include migration guidelines. This
allows users to choose when to upgrade and ensures that
older codebases remain functional with long-term support
(LTS).

B. Stability

Lento should prioritize stability in its features, standard
library APIs, and language design.

Once a feature is released, it should not change in a way
that breaks existing code. To achieve this, rigorous review-
ing of new features include both community feedback and
thorough testing. Most importantly, features are designed
with future compatibility in mind from the start. Defining a
small “external” feature interface to the language, allowing
internal changes with semantically equivalent behavior.

C. Performance

Lento strive to be a high-performance language in terms
of execution speed and resource efficiency. However, our
goal is not to compete with other low-level languages, but
rather to provide predictable performance characteristics.

D. Bootstrapping

One controversial standpoint and conscious design choice
is that Lento should not be bootstrapped in itself. Instead,
we believe that an implementation written in the low-level
systems language Rust is a better choice for achieving our
goals for the near future. This enables faster and more flexi-
ble development between major language editions while still
allowing for future self-hosting when Lento is matured. Rust
offers the Lento compiler a solid foundation for performance,
safety, and cross-platform compatibility.

E. Safety

Lento is designed with safety as a core principle. This
includes memory safety, type safety, concurrency safety and
behavioral safety through formal program specifications.
By leveraging a strong static type system with dependent
liquid refinements and a static effect-system, Lento aims to

'This is similar to Rust’s approach with new editions every 3
years, see https://blog.rust-lang.org/2014/10/30/Stability.

https://blog.rust-lang.org/2014/10/30/Stability

catch errors at compile-time, reducing runtime failures and
ensuring that programs behave as intended. Lento builds
on top of the principle of immutability as a cornerstone of
functional programming, making programs easier to reason
about and debug. Mutability and side effects are handled
safely while maintaining referential transparency.

F. Interoperability

All editions of Lento must be backwards compatible with
each other at the binary level through a stable Application
Binary Interface (ABI). Two programs compiled with differ-
ent editions of Lento must be able to interoperate without
issues.

Lento should also prioritize interoperability with existing
languages and ecosystems. This includes providing a robust
Foreign Function Interface (FFI) and ABI marshalling for
seamless integration with languages such as C/C++, Rust,
and Python.

G. Tooling and Ecosystem

Lento should provide a comprehensive tooling ecosystem
to enhance developer productivity. This includes a package
manager for easy dependency management, IDE integrations
for code completion and debugging, and build tools for
efficient project management.

H. Community

Our final standpoint is that we should foster a welcoming
and inclusive community around Lento that encourages
constructive collaboration and knowledge sharing. This in-
volves creating clear contribution guidelines, maintaining
open communication channels, and actively engaging with
users and contributors to gather feedback and improve the
language.

III. FEATURES

Lento aims to provide a robust set of features that enhance
developer productivity while maintaining the core values of
the language.

A. Strong Static Type System

This is a fundamental feature and core value of the
language itself. Lento provides a dependent type system
with liquid refinements and effects to catch both regular
type errors and logical contradictions in specifications all
at compile-time using bidirectional type inference without
sacrificing expressivity. See Section V for a more detailed
explanation of Lento’s type system.

B. Automated Parallelism

Lento targets scalable task-level parallelism with auto-
matic management of parallel work granularity and sched-
uling, informed by recent advances in automatic parallelism
management [1] and classic approaches to automatic paral-
lelization [2].

C. Concurrency Model
D. Memory Model

Region-based memory management and memory safety
without garbage collection via linear/affine types, ownership,
and borrowing.

E. Program Synthesis

Lento incorporates program synthesis techniques to au-
tomatically generate code snippets based on type-level
program specifications provided by the developer, see Sec-
tion V.G. This aligns with type-driven synthesis from
polymorphic refinement types [3].

F. Multistage Meta-Programming

Lento supports multistage meta-programming for constant
evaluation and staging code generation at compile-time
using a staged calculus in a type-safe way with phase
separation that is more powerful than traditional hygienic
macros.

G. Partial Evaluation

Lento supports partial evaluation to optimize programs by
precomputing parts of the code at compile-time based on
known inputs and contexts, resulting in more efficient run-
time performance. This is similar to multistage programming
but focuses on optimization rather than code generation, see
Section IILF.

H. Holes

Lento supports the use of holes in code, allowing devel-
opers to leave parts of the program unspecified during
rapid development. Instead of employing gradual typing,
holes in Lento must be statically typed but can be left
unimplemented. This marks a place for the compiler to “fill
in” an implementation using program synthesis techniques
(see Section IILE) based on the surrounding context, type
information, and specifications.

L Standard Library

Lento should provide two sets of officially-supported
standard libraries. First a stable cross-platform core, and
extended ext libraries with wide range of functionality out of
the box® The extended libraries may have platform-specific
dependencies and less stability guarantees compared to the
core libraries. See Fig. 1 for the standard library lattice in
Lento.

core ext. A lib X

prog

libc ext.B lib Y
Fig. 1. Standard library hierarchy with core core in blue, extended ext

libraries in purple, and user-defined packages in green.

*This is heavily inspired by both the Rust and Go standard library
designs, see https://doc.rust-lang.org/std and https://pkg.go.dev/std.

https://doc.rust-lang.org/std
https://pkg.go.dev/std

a) Core core: Essential data structures (lists, maps, sets,
graphs), algorithms (sorting, searching), concurrency (async/
await), networking (TCP, UDP), and file I/O APIs.

b) Extended ext: Additional libraries and frameworks
for common tasks and domains, such as OS interaction
(Win32, POSIX), web client and server development (HTTP,
WebSocket), data processing (CSV, JSON), databases (SQL,
NoSQL), GUI toolkits, scientific computing (numerical meth-
ods, statistics), computer graphics (2D/3D rendering, game
development), compression (gzip, zlib), cryptography (hash-
ing, encryption), machine learning (linear algebra, neural
networks), and more.

¢) Third-party libc: Lento does not aim to “reinvent the
wheel”, but use what knowledge and tools are available. One
such resource is libc, a powerful and backwards compatible
API with highly efficient implementations. The libc API is
cross-platform, offered via GNU och MUSL on Linux, and
UCRT on Windows. This library is a trusted base to build
on top of with the benefits of:

« Less library code in Lento thanks to reusability.

« Dynamic linking results in light-weight artifacts.

+ Performant runtime via optimized implementations.

J. Tooling Ecosystem

A language is only as good as its tooling and ecosystem.
Lento should therefore provide a comprehensive developer
tooling to enhance productivity and streamline processes.

a) Package Management: Lento should provide a built-in
package manager to facilitate easy dependency management,
versioning, and distribution of libraries and applications.
This includes support for semantic versioning, dependency
resolution, and publishing packages to an official default
central repository configurable by the user. Self-hosted reg-
istries should also be supported for private proprietary use
cases.

b) IDE Integrations: LSP support for popular text editors
to provide code completion, syntax highlighting, inline error
diagnostics, and debugging capabilities.

¢) Build Tools:

d) Testing Framework:

e) Documentation Generation: The language should include
tools for generating comprehensive documentation from
function signatures, but also from code comments and
type annotations. Comments should support markdown-like
syntax for formatting, code snippets, and linking to other
parts of the documentation. The primary source of truth
should always be type signatures to ensure accuracy and
consistency thanks to Lento’s strong typing with dependent
refinements and formal specifications.

IV. LANGUAGE SYNTAX
This section presents the formal syntax of expressions,
types, and program structure.
A. Lento by Example

We begin with a brief overview of Lento’s syntax via some
examples. Consider the following recursive fact function:

1 fact(n: int, acc = 1) : int = match n N Lento
2 | 0=>acc,
3 | _=>fact(n-1,n " acc),

Here, we define a function fact that takes an integer n and
returns its fact. The match expression allows us to pattern
match on the value of n, providing different cases for 0 and
other integers.

We could also define the type of fact using dependent
types and liquid refinements to specify that the result is
always non-negative and utilize pattern matching in argu-
ment bindings [4]:
type Nat ={v:int|v>=0} ¥ Lento
fact :: Nat -> Nat -> Nat

fn fact(n, acc) = fact(n - 1, n * acc)

N

fn fact(0, acc) = acc

Note that the function clause order does not matter here,
due to automatic ordering of case specificity placing the
general case last for us. This is usually done automatically by
the compiler, but for ambiguous cases, the compiler requires
us to specify the order ourselves explicitly.

B. Formal Syntax

Language terms are defined by the following expression
grammar:
ex=cnst | stm|e e | (p:7)=¢€
|®€ | €1 6962 | 669| {617"'7671,}
| [617'“?671] | {li : ei} | (61,...,6n>
| T(eq,...ne,) | (e:7)
enstz= () | n | n.n | true | false | "s" | 'c'
stma=id 1 T
| let p=¢; in e,
| typet=71ine
| fn f(py, - Dy) i T =€ in ey
| match e with {p; = eq,...,p, = €, }

(1)

| if e; then e, else eg
| import m in e
pa=cnst[id| _[p:7|®p|p®py |0
| [p1s - pnl [{li i 0} | Py, 00)
| T(p1;s -, Pp)
t==1id | forall id : 7 in ¢ | T'(idy, ...,id,,)

m =

id | id . m | id; as idy [{mq,...,m,}

Both n and 4 are metavariables ranging over numeric
literals and identifiers, respectively. The constants s and
c represent arbitrary string and character literals. The
symbol 7 ranges over types and T type constructors such
as Some(e) of type Option 7 where e : 7, defined in Sec-
tion V.A. The symbol @ ranges over operators (arithmetic,
logical, comparison, etc.) in different fixity positions (prefix,
infix, postfix). Statements in stm use standard keywords
such as let, fn, match, and if that are entirely syntactic
sugar and desugar to core expressions in e. Only match is

a fundamental construct in the operational semantics, see
Section VI. The formal “in e” syntax is implicit and only
included for clarity.

V. TYPE SYSTEM

The design unifies several advanced features within its
strong static type system and algebraic effect system to catch
a wide range of logical errors at compile time. The type
syntax is expressive yet easy to use due to our inference-
first principle, allowing developers to define complex types
and guarantee properties about their program behavior while
minimizing boilerplate code. This chapter describes a formal
operational semantics defining program execution: surface-
language constructs elaborate into a typed core calculus in
which typing and refinements are checked. Type aliases are
supported as syntactic sugar but do not impact the core type
system.

A. Type Syntax

The core type language is defined inductively for any
type-level term 7 as follows:
re=A|B|C|D|E|M|L|S|N|type,
=T | T T
unit | bool | char | str | uint,, | int,, | float, | num

== record{?; : 7;} | inductive{Z; : 7;}

s=z o7y | Bz o 77

mwgma;
|

=i e |n e e
M:=0r | O
L={v:7| ¢}
Sz=end |!7.577.8 | put:S|®{%:S;} | &{¢; :5;}
N == literal(c)
@ == true | false | v@c | @1 Apy |01 Vs |~
Note that 7, 7 € I ranges over indices in finite index sets I,
u € {1,...,128,big} and w € {8, ..., 128, big denotes signed/
unsigned integer bit-widths, v € {32,64,big} denotes a
floating-point bit-width. Literal constants ¢ narrow types of
category B. Predicates ¢ range over an SMT-decidable logic,
@ abbreviates a comparison operator (e.g., =, #, <, <, >,
>) against a constant c. The refinement variable v ranges
over the value denoted by a refined term. Type categories
are as follows:
« A: Type constructor application of parameterized types
and type-level functions (e.g., Map 7; 7;).
« B: Primitive base types and literals.
+ (' Composite types (records and recursive sum types
with type constructors).
« D: Dependent types.
« E: Effect-annotated function types.
+ M: Modal types.
« L: Liquid refinement types.
+ §: Session types.
« N: Literal singleton types (for constant propagation
and partial evaluation), e.g literal(42).

(2)

+ type;: The universe of types at level i € N (to sup-
port cumulative type hierarchies and avoid Girard’s
paradox).

The standard library provides numerous predefined types
and type constructors built on top of this core syntax,
see Section IILI. These include common data structures
(Tuple 7; ... T Vec v 7, Map 7; Tjs Set T), parameterized
polymorphic algorithms (sorting, searching), concurrency
abstractions (async/await effects), and networking primitives
(TCP/UDP channels with session types). There is also a type
class Chan(S) for abstracting over communication channels
(see Section V.E).

Example composite types in C are instances of record
types and inductive types (algebraic data types) such as
tuples, lists, 2D points, and option types:

Tuple == record{0 : int, 1 : bool, 2 : float}
List 7 == inductive{ Vil : unit,

Cons : X head : 7. List}
Point2D == record{x : int,y : int}

Option 7 == sum{Some : 7, None : unit}

3)

Types in D include dependent function types (II types)
and dependent pair types (X types). Algebraic effect-anno-
tations € denote function side-effects in category E, while
refined types are in L (see Section V.C) and session types
are in S (see Section V.E).

B. Dependent Types

Types can be parameterized by values to encode rich
invariants and relationships. This enables the expression of
rich invariants and relationships between data directly in
the type system. For example, we can define a vector type
parameterized by its length:

Vec(v : Int, 7 : Type) = {v : List(7) | len(v) = v} (4)

Here, Vec(n, 7) represents a list of elements of type 7 with
length exactly n. This permits specifications such as length-
indexed collections, value-range invariants, and relational
postconditions, while still admitting decidable checking once
refinements are restricted to an SMT-decidable fragment.
Foundational accounts of dependent and advanced types can

be found in [5] and [6].
C. Liquid Refinement Types

Liquid refinements qualify base types with logical predi-
cates, yielding logically qualified data types. Refined base
types have the form {v : B | ¢}, where B is a base type and
 is an SMT-decidable predicate verifying properties of the
value v at compile-time. Unless otherwise stated, predicates
are interpreted under the variable assignments induced by
T'. For example, the type {v:Int | 0 < v A v < n} denotes
integers in the half-open interval [0,n). To preserve decid-
ability, the refinement logic is restricted to an SMT-decidable
subset (typically a quantifier-free fragment), including theo-
ries such as linear arithmetic, uninterpreted functions, and
finite maps. See [4] for the original development and [7] for
subsequent extensions.

D. Modal Types

Lento incorporates modal type constructors to model
staged and time-dependent computation. We write necessity
and possibility modalities as 7 and <>7 respectively. Intu-
itively, &7 classifies computations that may produce a 7 in
the future. These modalities interact with staged meta-pro-
gramming (see Section IILF), effect tracking (see Section V.F),
concurrency abstractions (see Section III.C), and parallelism
(see Section IIL.B). For example, asynchronous functions can
be assigned modal signatures that make temporal availability
explicit:

async fetch(url : String) — > Data
await : & Data — Data (5)

Here > Data records that the result is not necessarily
available required by the temporal aspect of this particular
asynchronous computational effect.

E. Session Types

Lento uses session types to specify and enforce structured
communication protocols. Channels Chan(S) are parame-
terized by a session type S to statically guarantee correct
sequences of message passing between two parties. A session
type consists of special type operators modeling sending
and receiving messages, branching, selection, and recursion.
The underlying implementation of channels can be separated
from the session type specification, allowing for various
transport mechanisms (e.g., TCP, in-memory queues), opti-
mizations (e.g., zero-copy), or serialization formats (e.g.,
JSON, Protobuf’). We write output and input actions as
7.5 and ?7.S, respectively, together with external choice
(branching) and internal choice (selection):

Sz=end |t|r:S?7:8|pur:S
| &{fz : Sz}{zej} ‘ @ {l’ﬂz : SZ}{lEI}

Where end denotes the end of a session and ¢ a basic
type in B, see Section V.A. For real distributed systems with
multiparty sessions (MST) we can use the global protocol
type G to describe the overall communication protocol
among multiple participants, and project it onto local session
types S, = G | p for each participant p to ensure that each
party adheres to the global protocol. This guarantees com-
munication safety and protocol compliance by construction,
with automatic duality between send and receive operations
(client/server) by inverting sends/receives and select/branch
direction, denoted S.

7.5 =?7.8

@ {l’ﬂl : SZ}{ZEI} =

(6)

?77.8=17.5 ut.S = ut.S

&{Lﬂi : E}{iel}

&{z; Si}{iel} =® {l’ﬂi E}

(7)

{iel}

*Protocol Buffers are language-neutral, platform-neutral extensible
mechanisms for serializing structured data. From https://protobuf.dev

F. Effect System

Lento incorporates static algebraic liquid effect system to
reason about and handle side effects in programs such as I/
O operations, state mutations, exceptions, concurrency, and
even deterministic parallelism. [8] This allows developers to
reason about the effects their code may have, enabling safer
and more predictable programming patterns.

G. Program Specifications

Verifiable type annotations and function signatures ex-
press preconditions, postconditions, and invariants are used
to reason about program behavior statically and formally to
ensure runtime safety. This allows developers to write more
reliable code and reduce the likelihood of logical bugs.

H. Syntax and Grammar

The core type language 7 is defined inductively. We
distinguish between base types B (primitive scalars defined
in the lattice) and refined types.

Ts=B|{v:B|y}|z:T 2T
B == Unit | Int,, | Ulnt,, | Float,, | Bool
p==true | false | v @ c | p; Ay

Where w € {1,...,128,big} represents the bit-width of
the integer, and ¢ represents the effect set associated with
function execution. The logical predicates ¢ are expressed in
an SMT-decidable fragment, allowing for automated verifi-
cation during type checking where @ represents equality or
inequality to constant ¢ such as v =42, v # 0 or v > 0.

a) Examples:

(8)

1 // Example of user-defined types J¥ Lento
2 Age = uint

3 Point = {x: float, y: float }

I The Numeric Lattice and Subtyping

Lento supports a subtyping mechanism that allows for
hierarchical relationships between types. This enables poly-
morphism and code reuse, as functions can accept arguments
of a supertype while operating on subtypes.

Unlike standard systems where numeric types are disjoint,
Lento organizes scalars into a bounded lattice structure £ =
(B, C). Subtyping is defined via lattice inclusion rather than
implicit coercion, simplifying the elaboration phase.

We define the subtyping relation <: as the conjunction of
structural inclusion and logical implication.

B, C B,
Validgyr(¢1 = ¢2)

PE{v:By | g1} < {v: By | wa} ©)

Fig. 2. Refinement Subtyping Rule. A type is a subtype if its base is smaller
in the lattice AND its logical predicate implies the parent’s predicate.

Sub-Refine

This allows strictly checked narrow types (e.g., u8) to be
used where wider types (e.g., 164) are expected, but not vice
versa, without runtime casting.

https://protobuf.dev

num
uint > int » float

ul,ugd,ule6,) i8,i16,) f32,/>
u32,u64, i32,i64, f64

9

u128,ubig 1128,ibig P fbig
\ 4
\\ | ,’
D 2
L

Fig. 3. Numeric type lattice with subtyping in blue and widening in purple.

See Fig. 3 for the number subtyping lattice in Lento
illustrating primitive widening type conversions (numeric
promotion) and subtyping relationships. [9]

J. Bidirectional Type Inference

Lento employs a bidirectional type inference algorithm
num that combines both type checking and type synthesis.
This approach allows the compiler to infer types of expres-
sions without requiring explicit type annotations.

To support local type inference without global unification
(which is undecidable with dependent refinements), Lento
utilizes a bidirectional discipline. We split the typing judg-
ment into two modes: Synthesis (=) and Checking (<=).

a) Synthesis (=>): In synthesis mode, the compiler gener-
ates a type 7 for an expression e based on the environment I'.

z:7el

Ftz={v:7|v==x}

Var (10)

b) Checking (<=): In checking mode, the compiler verifies

expression e against a known type 7. Crucially, this allows
for “smart” literals that adapt to their expected width.

'te=1’

F'kr <7

I'Fe<r

(11)

Subsumption

K. Operational Semantics

Lento uses a call-by-value, big-step operational semantics.
The core reduction rule for let-binding illustrates the flow-
sensitive nature of the environment update.

I'ke oy
Tz v Feg vy

E-Let (12)

T'Flet x =e; iney | vy

VI. OPERATIONAL SEMANTICS

This section defines the small-step operational semantics
of Lento using a standard evaluation relation e — e’ over
expressions.

stage/macro lex o parse
) > 5 > A
|
I
compile elab
I
Y codegen opt o eqSat lower
E = I* = 1 = K
instrument
reopt(6)
tune run
0 = II = /o

Fig. 4. Internal compilation pipeline with stages from source code to final
artifact highlighted in blue

VII. COMPILATION

To effectively translate Lento’s high-level abstractions and
rich type system into efficient executable code, a sophisti-
cated multistage compilation process is required.

A. Overview

Including staging, elaboration, lowering, optimization,
code generation, and profiling with feedback for re-optimiza-
tion.

Interpretation:

B. Objects (nodes)

« S: Source program

+ S°: Staged/expanded source (after hygienic macros /
MSP / const-eval)

« A: AST / syntax tree

+ K: “Semantic IR” typed core calculus (post-elaboration,
bidirectional typing, holes resolved/registered)

« I: Mid-level IR (e.g., SSA-ish or semantic dialect)

« I*: Optimized IR

+ E: Final artifact (object file / executable / WASM

module)
© Kypeer Lipect Specialized (partial-evaluated) variants
+ I, Instrumented IR

» II: Profiling data
+ 0: Optimization parameters / decisions derived from (II)

C. Morphisms (edges)

« stage/macro: Hygienic macros, MSP phase splitting,
const-eval fragment

+ lex o parse: Lexer+parser

+ elab: Elaboration/type inference (bidirectional) into
core

+ lower: Lowering into IR

« opt: Standard optimizations + fusion + specialization
triggers + etc.

« eqSat/rewrite: Equality saturation / rewrite-rule en-
gine for library-driven optimization

« partialEval: Specialization w.r.t. known inputs

« instrument, run, tune: PGO loop with a “pause” await-
ing external execution input

(1]

(2]

(3]

(4]

(5]

6]

(71
(8]

(9]

REFERENCES

S. Westrick, M. Fluet, M. Rainey, and U. A. Acar, “Automatic Parallelism
Management,” Proc. ACM Program. Lang., vol. 8, no. POPL, Jan. 2024,
doi: 10.1145/3632880.

S. P. Midkift, Automatic Parallelization. in Synthesis Lectures on Com-
puter Architecture. Cham: Springer International Publishing, 2022. doi:
10.1007/978-3-031-01736-0.

N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis
from polymorphic refinement types,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, in PLDI '16. Santa Barbara, CA, USA: Association for Computing
Machinery, 2016, pp. 522-538. doi: 10.1145/2908080.2908093.

P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,’ in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, in PLDI '08. Tucson, AZ, USA:
Association for Computing Machinery, 2008, pp. 159-169. doi:
10.1145/1375581.1375602.

H. Xi and F. Pfenning, Advanced Types in Programming Languages. in
Titolo collana. Cambridge University Press, 2016. [Online]. Available:
https://dl.acm.org/doi/book/10.5555/1076265

B. Pierce, Types and Programming Languages. in MIT Press Books. MIT
Press, 2002. [Online]. Available: https://dl.acm.org/doi/book/10.5555/
509043

M. Woo-Kawaguchi, “High-Level Liquid Types,” Doctoral dissertation,
2016. [Online]. Available: https://escholarship.org/uc/item/7d8525sz
M. Kawaguchi, P. Rondon, A. Bakst, and R. Jhala, “Deterministic
parallelism via liquid effects,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, in
PLDI '12. Beijing, China: Association for Computing Machinery, 2012,
pp- 45-54. doi: 10.1145/2254064.2254071.

F. Pfenning, “Lecture Notes on Subtyping” 2023, [Online].
Available: https://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-
subtyping.pdf

https://doi.org/10.1145/3632880
https://doi.org/10.1007/978-3-031-01736-0
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/1375581.1375602
https://dl.acm.org/doi/book/10.5555/1076265
https://dl.acm.org/doi/book/10.5555/509043
https://dl.acm.org/doi/book/10.5555/509043
https://escholarship.org/uc/item/7d8525sz
https://doi.org/10.1145/2254064.2254071
https://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf
https://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

	I) Introduction
	II) Values
	II.A) Longevity
	II.B) Stability
	II.C) Performance
	II.D) Bootstrapping
	II.E) Safety
	II.F) Interoperability
	II.G) Tooling and Ecosystem
	II.H) Community

	III) Features
	III.A) Strong Static Type System
	III.B) Automated Parallelism
	III.C) Concurrency Model
	III.D) Memory Model
	III.E) Program Synthesis
	III.F) Multistage Meta-Programming
	III.G) Partial Evaluation
	III.H) Holes
	III.I) Standard Library
	III.I.a) Core core
	III.I.b) Extended ext
	III.I.c) Third-party libc

	III.J) Tooling Ecosystem
	III.J.a) Package Management
	III.J.b) IDE Integrations
	III.J.c) Build Tools
	III.J.d) Testing Framework
	III.J.e) Documentation Generation

	IV) Language Syntax
	IV.A) Lento by Example
	IV.B) Formal Syntax

	V) Type System
	V.A) Type Syntax
	V.B) Dependent Types
	V.C) Liquid Refinement Types
	V.D) Modal Types
	V.E) Session Types
	V.F) Effect System
	V.G) Program Specifications
	V.H) Syntax and Grammar
	V.H.a) Examples

	V.I) The Numeric Lattice and Subtyping
	V.J) Bidirectional Type Inference
	V.J.a) Synthesis (⟹)
	V.J.b) Checking (⟸)

	V.K) Operational Semantics

	VI) Operational Semantics
	VII) Compilation
	VII.A) Overview
	VII.B) Objects (nodes)
	VII.C) Morphisms (edges)

	References

