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Abstract—The result of decades of programming language 
research can become diluted when retrofitted into main­
stream languages. Legacy constraints and compatibility 
requirements force compromises that lead to complex and 
unwieldy designs. Consequently, redesigning a new modern 
language from the ground up is often necessary to fully 
leverage state-of-the-art advances in typing, verification, and 
compilation. In this paper we introduce a high-level and 
work-in-progress vision of Lento, a language designed to 
bridge the gap between high-level abstraction and low-level 
performance.

Index Terms—Programming Language, Parallelism, Guided 
Synthesis, Program Specification, Formal Verification, Liquid 
Types, Dependent Types, Session Types, Effect System, Type 
Inference

I. Introduction

Programming languages today often force developers to 
choose between high-level abstractions that enhance pro
ductivity and low-level control that optimizes performance. 
This dichotomy has led to a fragmented landscape where 
languages excel in one domain but falter in the other. 
High-level languages, such as Python and JavaScript, prior
itize ease of use and rapid development but often sacrifice 
performance and compile-time type safety. Conversely, 
low-level languages like C and Rust offer fine-grained con
trol over system resources but come with steep learning 
curves, increased complexity, and higher demands on 
expertise.

Lento aims to bridge this gap by introducing a novel 
programming language while also incorporating the bene
fits of the pure functional paradigm. Leveraging strong 
static typing, lazy evaluation, automated parallelism and 
concurrency, user-friendly syntax, and more, to offer several 
advantages over existing languages. It is designed to be 
safe, performant, and stable while promoting longevity 
in codebases.

II. Values

In the Lento compiler team we define a fundamental set 
of values people developing the language should adhere to. 
These extend to the language standard specification and 
form the basis for all future features and decisions. Our 
standpoints on these values are outlined below and are goals 
we strive to achieve in the development of Lento.

A. Longevity

Lento should be a language built to last for decades. We 
have learned from the mistakes of others and decide to 
support multiple versions of the language (called language 
editions1) simultaneously. Where libraries in one edition 
must be backward compatible and seamlessly interoperate 
with those compiled in other editions. Editions with major 
breaking changes should include migration guidelines. This 
allows users to choose when to upgrade and ensures that 
older codebases remain functional with long-term support 
(LTS).

B. Stability

Lento should prioritize stability in its features, standard 
library APIs, and language design.

Once a feature is released, it should not change in a way 
that breaks existing code. To achieve this, rigorous review
ing of new features include both community feedback and 
thorough testing. Most importantly, features are designed 
with future compatibility in mind from the start. Defining a 
small “external” feature interface to the language, allowing 
internal changes with semantically equivalent behavior.

C. Performance

Lento strive to be a high-performance language in terms 
of execution speed and resource efficiency. However, our 
goal is not to compete with other low-level languages, but 
rather to provide predictable performance characteristics.

D. Bootstrapping

One controversial standpoint and conscious design choice 
is that Lento should not be bootstrapped in itself. Instead, 
we believe that an implementation written in the low-level 
systems language Rust is a better choice for achieving our 
goals for the near future. This enables faster and more flexi
ble development between major language editions while still 
allowing for future self-hosting when Lento is matured. Rust 
offers the Lento compiler a solid foundation for performance, 
safety, and cross-platform compatibility.

E. Safety

Lento is designed with safety as a core principle. This 
includes memory safety, type safety, concurrency safety and 
behavioral safety through formal program specifications. 
By leveraging a strong static type system with dependent 
liquid refinements and a static effect-system, Lento aims to 

1This is similar to Rust’s approach with new editions every 3 
years, see https://blog.rust-lang.org/2014/10/30/Stability.
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catch errors at compile-time, reducing runtime failures and 
ensuring that programs behave as intended. Lento builds 
on top of the principle of immutability as a cornerstone of 
functional programming, making programs easier to reason 
about and debug. Mutability and side effects are handled 
safely while maintaining referential transparency.

F. Interoperability

All editions of Lento must be backwards compatible with 
each other at the binary level through a stable Application 
Binary Interface (ABI). Two programs compiled with differ
ent editions of Lento must be able to interoperate without 
issues.

Lento should also prioritize interoperability with existing 
languages and ecosystems. This includes providing a robust 
Foreign Function Interface (FFI) and ABI marshalling for 
seamless integration with languages such as C/C++, Rust, 
and Python.

G. Tooling and Ecosystem

Lento should provide a comprehensive tooling ecosystem 
to enhance developer productivity. This includes a package 
manager for easy dependency management, IDE integrations 
for code completion and debugging, and build tools for 
efficient project management.

H. Community

Our final standpoint is that we should foster a welcoming 
and inclusive community around Lento that encourages 
constructive collaboration and knowledge sharing. This in
volves creating clear contribution guidelines, maintaining 
open communication channels, and actively engaging with 
users and contributors to gather feedback and improve the 
language.

III. Features

Lento aims to provide a robust set of features that enhance 
developer productivity while maintaining the core values of 
the language.

A. Strong Static Type System

This is a fundamental feature and core value of the 
language itself. Lento provides a dependent type system 
with liquid refinements and effects to catch both regular 
type errors and logical contradictions in specifications all 
at compile-time using bidirectional type inference without 
sacrificing expressivity. See Section  V for a more detailed 
explanation of Lento’s type system.

B. Automated Parallelism

Lento targets scalable task-level parallelism with auto
matic management of parallel work granularity and sched
uling, informed by recent advances in automatic parallelism 
management [1] and classic approaches to automatic paral
lelization [2].

C. Concurrency Model

D. Memory Model

Region-based memory management and memory safety 
without garbage collection via linear/affine types, ownership, 
and borrowing.

E. Program Synthesis

Lento incorporates program synthesis techniques to au
tomatically generate code snippets based on type-level 
program specifications provided by the developer, see Sec
tion  V.G. This aligns with type-driven synthesis from 
polymorphic refinement types [3].

F. Multistage Meta-Programming

Lento supports multistage meta-programming for constant 
evaluation and staging code generation at compile-time 
using a staged calculus in a type-safe way with phase 
separation that is more powerful than traditional hygienic 
macros.

G. Partial Evaluation

Lento supports partial evaluation to optimize programs by 
precomputing parts of the code at compile-time based on 
known inputs and contexts, resulting in more efficient run
time performance. This is similar to multistage programming 
but focuses on optimization rather than code generation, see 
Section  III.F.

H. Holes

Lento supports the use of holes in code, allowing devel
opers to leave parts of the program unspecified during 
rapid development. Instead of employing gradual typing, 
holes in Lento must be statically typed but can be left 
unimplemented. This marks a place for the compiler to “fill 
in” an implementation using program synthesis techniques 
(see Section  III.E) based on the surrounding context, type 
information, and specifications.

I. Standard Library

Lento should provide two sets of officially-supported 
standard libraries. First a stable cross-platform core, and 
extended ext libraries with wide range of functionality out of 
the box2. The extended libraries may have platform-specific 
dependencies and less stability guarantees compared to the 
core libraries. See Fig.  1 for the standard library lattice in 
Lento.

core

libc

ext.A

ext.B

lib X

lib Y

prog

Fig. 1. Standard library hierarchy with core core in blue, extended ext 
libraries in purple, and user-defined packages in green.

2This is heavily inspired by both the Rust and Go standard library 
designs, see https://doc.rust-lang.org/std and https://pkg.go.dev/std.
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a) Core core: Essential data structures (lists, maps, sets, 
graphs), algorithms (sorting, searching), concurrency (async/
await), networking (TCP, UDP), and file I/O APIs.

b) Extended ext: Additional libraries and frameworks 
for common tasks and domains, such as OS interaction 
(Win32, POSIX), web client and server development (HTTP, 
WebSocket), data processing (CSV, JSON), databases (SQL, 
NoSQL), GUI toolkits, scientific computing (numerical meth
ods, statistics), computer graphics (2D/3D rendering, game 
development), compression (gzip, zlib), cryptography (hash
ing, encryption), machine learning (linear algebra, neural 
networks), and more.

c) Third-party libc: Lento does not aim to “reinvent the 
wheel”, but use what knowledge and tools are available. One 
such resource is libc, a powerful and backwards compatible 
API with highly efficient implementations. The libc API is 
cross-platform, offered via GNU och MUSL on Linux, and 
UCRT on Windows. This library is a trusted base to build 
on top of with the benefits of:

• Less library code in Lento thanks to reusability.
• Dynamic linking results in light-weight artifacts.
• Performant runtime via optimized implementations.

J. Tooling Ecosystem

A language is only as good as its tooling and ecosystem. 
Lento should therefore provide a comprehensive developer 
tooling to enhance productivity and streamline processes.

a) Package Management: Lento should provide a built-in 
package manager to facilitate easy dependency management, 
versioning, and distribution of libraries and applications. 
This includes support for semantic versioning, dependency 
resolution, and publishing packages to an official default 
central repository configurable by the user. Self-hosted reg
istries should also be supported for private proprietary use 
cases.

b) IDE Integrations: LSP support for popular text editors 
to provide code completion, syntax highlighting, inline error 
diagnostics, and debugging capabilities.

c) Build Tools:
d) Testing Framework:
e) Documentation Generation: The language should include 

tools for generating comprehensive documentation from 
function signatures, but also from code comments and 
type annotations. Comments should support markdown-like 
syntax for formatting, code snippets, and linking to other 
parts of the documentation. The primary source of truth 
should always be type signatures to ensure accuracy and 
consistency thanks to Lento’s strong typing with dependent 
refinements and formal specifications.

IV. Language Syntax

This section presents the formal syntax of expressions, 
types, and program structure.

A. Lento by Example

We begin with a brief overview of Lento’s syntax via some 
examples. Consider the following recursive fact function:

1 fact(n: int, acc = 1) : int = match n Lento

2     |  0 => acc,

3     |  _ => fact(n - 1, n * acc),

Here, we define a function fact that takes an integer n and 
returns its fact. The match expression allows us to pattern 
match on the value of n, providing different cases for 0 and 
other integers.

We could also define the type of fact using dependent 
types and liquid refinements to specify that the result is 
always non-negative and utilize pattern matching in argu
ment bindings [4]:

1 type Nat = { v: int | v >= 0 } Lento

2 fact :: Nat -> Nat -> Nat

3 fn fact(n, acc) = fact(n - 1, n * acc)

4 fn fact(0, acc) = acc

Note that the function clause order does not matter here, 
due to automatic ordering of case specificity placing the 
general case last for us. This is usually done automatically by 
the compiler, but for ambiguous cases, the compiler requires 
us to specify the order ourselves explicitly.

B. Formal Syntax

Language terms are defined by the following expression 
grammar:

𝑒 ⩴ 𝑐𝑛𝑠𝑡 | 𝑠𝑡𝑚 | 𝑒1 𝑒2 | (𝑝 : 𝜏) ⇒ 𝑒
| ⊕ 𝑒 | 𝑒1 ⊕ 𝑒2 | 𝑒 ⊕ | {𝑒1, …, 𝑒𝑛}
| [𝑒1, …, 𝑒𝑛] | {𝑙𝑖 : 𝑒𝑖} | (𝑒1, …, 𝑒𝑛)
| 𝑇 (𝑒1, …, 𝑒𝑛) | (𝑒 : 𝜏)

𝑐𝑛𝑠𝑡 ⩴ () | 𝑛 | 𝑛.𝑛 | 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 | "s" | 'c'
𝑠𝑡𝑚 ⩴ id :: 𝜏

| 𝐥𝐞𝐭 𝑝 = 𝑒1 in 𝑒2

| 𝐭𝐲𝐩𝐞 𝑡 = 𝜏 in 𝑒
| 𝐟𝐧 𝑓(𝑝1, …, 𝑝𝑛) : 𝜏 = 𝑒1 in 𝑒2

| 𝐦𝐚𝐭𝐜𝐡 𝑒 with {𝑝1 ⇒ 𝑒1, …, 𝑝𝑛 ⇒ 𝑒𝑛}
| 𝐢𝐟 𝑒1 𝐭𝐡𝐞𝐧 𝑒2 𝐞𝐥𝐬𝐞 𝑒3

| 𝐢𝐦𝐩𝐨𝐫𝐭 𝑚 in 𝑒
𝑝 ⩴ 𝑐𝑛𝑠𝑡 | id | __ | 𝑝 : 𝜏 | ⊕ 𝑝 | 𝑝1 ⊕ 𝑝2 | 𝑝 ⊕

| [𝑝1, …, 𝑝𝑛] | {𝑙𝑖 : 𝑝𝑖} | (𝑝1, …, 𝑝𝑛)
| 𝑇 (𝑝1, …, 𝑝𝑛)

𝑡 ⩴ id | 𝐟𝐨𝐫𝐚𝐥𝐥 id : 𝜏 in 𝑡 | 𝑇 (id1, …, id𝑛)
𝑚 ⩴ id | id . 𝑚 | id1 𝐚𝐬 id2 |{𝑚1, …, 𝑚𝑛}

(1)

Both 𝑛 and 𝑖 are metavariables ranging over numeric 
literals and identifiers, respectively. The constants s and 
c represent arbitrary string and character literals. The 
symbol 𝜏  ranges over types and 𝑇  type constructors such 
as 𝑆𝑜𝑚𝑒(𝑒) of type Option 𝜏  where 𝑒 : 𝜏 , defined in Sec
tion  V.A. The symbol ⊕ ranges over operators (arithmetic, 
logical, comparison, etc.) in different fixity positions (prefix, 
infix, postfix). Statements in 𝑠𝑡𝑚 use standard keywords 
such as let, fn, match, and if that are entirely syntactic 
sugar and desugar to core expressions in 𝑒. Only match is 
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a fundamental construct in the operational semantics, see 
Section  VI. The formal “in 𝑒” syntax is implicit and only 
included for clarity.

V. Type System

The design unifies several advanced features within its 
strong static type system and algebraic effect system to catch 
a wide range of logical errors at compile time. The type 
syntax is expressive yet easy to use due to our inference-
first principle, allowing developers to define complex types 
and guarantee properties about their program behavior while 
minimizing boilerplate code. This chapter describes a formal 
operational semantics defining program execution: surface-
language constructs elaborate into a typed core calculus in 
which typing and refinements are checked. Type aliases are 
supported as syntactic sugar but do not impact the core type 
system.

A. Type Syntax

The core type language is defined inductively for any 
type-level term 𝜏  as follows:

𝜏 ⩴ 𝐴 | 𝐵 | 𝐶 | 𝐷 | 𝐸 | 𝑀 | 𝐿 | 𝑆 | 𝑁 | 𝐭𝐲𝐩𝐞𝑖

𝐴 ⩴ 𝜏𝑖 → 𝜏𝑗 | 𝜏𝑖 𝜏𝑗

𝐵 ⩴ unit | bool | char | str | uint𝑢 | int𝑤 | float𝑣 | num
𝐶 ⩴ record{𝓁︀𝑖 : 𝜏𝑖} | inductive{𝓁︀𝑖 : 𝜏𝑖}
𝐷 ⩴ Π𝑥 : 𝜏𝑖.𝜏𝑗 | Σ𝑥 : 𝜏𝑖.𝜏𝑗

𝐸 ⩴ 𝑥 : 𝜏𝑖 → 𝜀 → 𝜏𝑗 | 𝜏𝑖 ! 𝜀 → 𝜏𝑗 | 𝜏𝑖 ? 𝜀 → 𝜏𝑗

𝑀 ⩴ □𝜏 | ◇𝜏
𝐿 ⩴ {𝜈 : 𝜏 | 𝜑}
𝑆 ⩴ 𝐞𝐧𝐝 | !𝜏 .𝑆 |? 𝜏.𝑆 | 𝜇𝑡 : 𝑆 | ⊕ {𝓁︀𝑖 : 𝑆𝑖} | &{𝓁︀𝑖 : 𝑆𝑖}
𝑁 ⩴ literal(𝑐)
𝜑 ⩴ true | false | 𝜈 ⊕ 𝑐 | 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 | ¬𝜑

(2)

Note that 𝑖, 𝑗 ∈ 𝐼  ranges over indices in finite index sets 𝐼 , 
𝑢 ∈ {1, …, 128, big} and 𝑤 ∈ {8, …, 128, big denotes signed/
unsigned integer bit-widths, 𝑣 ∈ {32, 64, big} denotes a 
floating-point bit-width. Literal constants 𝑐 narrow types of 
category 𝐵. Predicates 𝜑 range over an SMT-decidable logic, 
⊕ abbreviates a comparison operator (e.g., =, ≠, <, ≤, >, 
≥) against a constant 𝑐. The refinement variable 𝜈 ranges 
over the value denoted by a refined term. Type categories 
are as follows:

• 𝐴: Type constructor application of parameterized types 
and type-level functions (e.g., Map 𝜏𝑖 𝜏𝑗).

• 𝐵: Primitive base types and literals.
• 𝐶 : Composite types (records and recursive sum types 

with type constructors).
• 𝐷: Dependent types.
• 𝐸: Effect-annotated function types.
• 𝑀 : Modal types.
• 𝐿: Liquid refinement types.
• 𝑆: Session types.
• 𝑁 : Literal singleton types (for constant propagation 

and partial evaluation), e.g literal(42).

• 𝐭𝐲𝐩𝐞𝑖: The universe of types at level 𝑖 ∈ ℕ (to sup
port cumulative type hierarchies and avoid Girard’s 
paradox).

The standard library provides numerous predefined types 
and type constructors built on top of this core syntax, 
see Section  III.I. These include common data structures 
(Tuple 𝜏𝑖 … 𝜏𝑗, Vec 𝜈 𝜏 , Map 𝜏𝑖 𝜏𝑗, Set 𝜏 ), parameterized 
polymorphic algorithms (sorting, searching), concurrency 
abstractions (async/await effects), and networking primitives 
(TCP/UDP channels with session types). There is also a type 
class 𝐂𝐡𝐚𝐧(𝑆) for abstracting over communication channels 
(see Section V.E).

Example composite types in 𝐶 are instances of record 
types and inductive types (algebraic data types) such as 
tuples, lists, 2D points, and option types:

Tuple ⩴ record{0 : int, 1 : bool, 2 : float}
List 𝜏 ⩴ inductive{𝑁𝑖𝑙 : unit,

𝐶𝑜𝑛𝑠 : Σ head : 𝜏. List}
Point2D ⩴ record{𝑥 : int, 𝑦 : int}
Option 𝜏 ⩴ sum{𝑆𝑜𝑚𝑒 : 𝜏, 𝑁𝑜𝑛𝑒 : unit}

(3)

Types in 𝐷 include dependent function types (Π types) 
and dependent pair types (Σ types). Algebraic effect-anno
tations 𝜀 denote function side-effects in category 𝐸, while 
refined types are in 𝐿 (see Section  V.C) and session types 
are in 𝑆 (see Section V.E).

B. Dependent Types

Types can be parameterized by values to encode rich 
invariants and relationships. This enables the expression of 
rich invariants and relationships between data directly in 
the type system. For example, we can define a vector type 
parameterized by its length:

Vec(𝜈 : Int, 𝜏 : Type) = {𝜈 : List(𝜏) | len(𝜈) = 𝜈} (4)
Here, Vec(𝑛, 𝜏) represents a list of elements of type 𝜏  with 

length exactly 𝑛. This permits specifications such as length-
indexed collections, value-range invariants, and relational 
postconditions, while still admitting decidable checking once 
refinements are restricted to an SMT-decidable fragment. 
Foundational accounts of dependent and advanced types can 
be found in [5] and [6].

C. Liquid Refinement Types

Liquid refinements qualify base types with logical predi
cates, yielding logically qualified data types. Refined base 
types have the form {𝜈 : 𝐵 | 𝜑}, where 𝐵 is a base type and 
𝜑 is an SMT-decidable predicate verifying properties of the 
value 𝜈 at compile-time. Unless otherwise stated, predicates 
are interpreted under the variable assignments induced by 
Γ. For example, the type {𝜈 : Int | 0 ≤ 𝜈 ∧ 𝜈 < 𝑛} denotes 
integers in the half-open interval [0, 𝑛). To preserve decid
ability, the refinement logic is restricted to an SMT-decidable 
subset (typically a quantifier-free fragment), including theo
ries such as linear arithmetic, uninterpreted functions, and 
finite maps. See [4] for the original development and [7] for 
subsequent extensions.
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D. Modal Types

Lento incorporates modal type constructors to model 
staged and time-dependent computation. We write necessity 
and possibility modalities as □𝜏  and ◇𝜏  respectively. Intu
itively, ◇𝜏  classifies computations that may produce a 𝜏  in 
the future. These modalities interact with staged meta-pro
gramming (see Section III.F), effect tracking (see Section V.F), 
concurrency abstractions (see Section  III.C), and parallelism 
(see Section III.B). For example, asynchronous functions can 
be assigned modal signatures that make temporal availability 
explicit:

async fetch(url : 𝑆𝑡𝑟𝑖𝑛𝑔) → ◇ 𝐷𝑎𝑡𝑎
await : ◇ 𝐷𝑎𝑡𝑎 → 𝐷𝑎𝑡𝑎 (5)

Here ◇ 𝐷𝑎𝑡𝑎 records that the result is not necessarily 
available required by the temporal aspect of this particular 
asynchronous computational effect.

E. Session Types

Lento uses session types to specify and enforce structured 
communication protocols. Channels 𝐂𝐡𝐚𝐧(𝑆) are parame
terized by a session type 𝑆 to statically guarantee correct 
sequences of message passing between two parties. A session 
type consists of special type operators modeling sending 
and receiving messages, branching, selection, and recursion. 
The underlying implementation of channels can be separated 
from the session type specification, allowing for various 
transport mechanisms (e.g., TCP, in-memory queues), opti
mizations (e.g., zero-copy), or serialization formats (e.g., 
JSON, Protobuf3). We write output and input actions as 
!𝜏 .𝑆 and ? 𝜏.𝑆, respectively, together with external choice 
(branching) and internal choice (selection):

𝑆 ⩴ 𝐞𝐧𝐝 | 𝑡 | !𝜏 : 𝑆 |? 𝜏 : 𝑆 | 𝜇𝜏 : 𝑆
| &{𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼} | ⊕ {𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼}

(6)

Where 𝐞𝐧𝐝 denotes the end of a session and 𝑡 a basic 
type in 𝐵, see Section V.A. For real distributed systems with 
multiparty sessions (MST) we can use the global protocol 
type 𝐺 to describe the overall communication protocol 
among multiple participants, and project it onto local session 
types 𝑆𝑝 = 𝐺 ↓ 𝑝 for each participant 𝑝 to ensure that each 
party adheres to the global protocol. This guarantees com
munication safety and protocol compliance by construction, 
with automatic duality between send and receive operations 
(client/server) by inverting sends/receives and select/branch 
direction, denoted 𝑆.

!𝜏 .𝑆 =? 𝜏.𝑆 ? 𝜏.𝑆 = !𝜏.𝑆 𝜇𝑡.𝑆 = 𝜇𝑡.𝑆
⊕ {𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼} = &{𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼}

&{𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼} = ⊕ {𝓁︀𝑖 : 𝑆𝑖}{𝑖∈𝐼}

(7)

3Protocol Buffers are language-neutral, platform-neutral extensible 
mechanisms for serializing structured data. From https://protobuf.dev

F. Effect System

Lento incorporates static algebraic liquid effect system to 
reason about and handle side effects in programs such as I/
O operations, state mutations, exceptions, concurrency, and 
even deterministic parallelism. [8] This allows developers to 
reason about the effects their code may have, enabling safer 
and more predictable programming patterns.

G. Program Specifications

Verifiable type annotations and function signatures ex
press preconditions, postconditions, and invariants are used 
to reason about program behavior statically and formally to 
ensure runtime safety. This allows developers to write more 
reliable code and reduce the likelihood of logical bugs.

H. Syntax and Grammar

The core type language 𝜏  is defined inductively. We 
distinguish between base types 𝐵 (primitive scalars defined 
in the lattice) and refined types.

𝜏 ⩴ 𝐵 | {𝜈 : 𝐵 | 𝜑} | 𝑥 : 𝜏1 → 𝜀 → 𝜏2

𝐵 ⩴ Unit | Int𝑤 | UInt𝑤 | Float𝑤 | Bool
𝜑 ⩴ true | false | 𝜈 ⊕ 𝑐 | 𝜑1 ∧ 𝜑2

(8)

Where 𝑤 ∈ {1, …, 128, big} represents the bit-width of 
the integer, and 𝜀 represents the effect set associated with 
function execution. The logical predicates 𝜑 are expressed in 
an SMT-decidable fragment, allowing for automated verifi
cation during type checking where ⊕ represents equality or 
inequality to constant 𝑐 such as 𝜈 = 42, 𝜈 ≠ 0 or 𝜈 > 0.

a) Examples:

1 // Example of user-defined types Lento

2 Age = uint

3 Point = { x: float, y: float }

I. The Numeric Lattice and Subtyping

Lento supports a subtyping mechanism that allows for 
hierarchical relationships between types. This enables poly
morphism and code reuse, as functions can accept arguments 
of a supertype while operating on subtypes.

Unlike standard systems where numeric types are disjoint, 
Lento organizes scalars into a bounded lattice structure ℒ︀ =
(𝐵, ⊆). Subtyping is defined via lattice inclusion rather than 
implicit coercion, simplifying the elaboration phase.

We define the subtyping relation <: as the conjunction of 
structural inclusion and logical implication.

𝐵1 ⊆ 𝐵2

ValidSMT(𝜑1 ⇒ 𝜑2)
Γ ⊢ {𝜈 : 𝐵1 | 𝜑1} <: {𝜈 : 𝐵2 | 𝜑2}

Sub-Refine (9)

Fig. 2. Refinement Subtyping Rule. A type is a subtype if its base is smaller 
in the lattice AND its logical predicate implies the parent’s predicate.

This allows strictly checked narrow types (e.g., u8) to be 
used where wider types (e.g., u64) are expected, but not vice 
versa, without runtime casting.
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num

floatintuint

u1,u8,u16,
u32,u64,

u128,ubig

i8,i16,
i32,i64,

i128,ibig

f32,
f64,
fbig

⊥

Fig. 3. Numeric type lattice with subtyping in blue and widening in purple.

See Fig.  3 for the number subtyping lattice in Lento 
illustrating primitive widening type conversions (numeric 
promotion) and subtyping relationships. [9]

J. Bidirectional Type Inference

Lento employs a bidirectional type inference algorithm 
num that combines both type checking and type synthesis. 
This approach allows the compiler to infer types of expres
sions without requiring explicit type annotations.

To support local type inference without global unification 
(which is undecidable with dependent refinements), Lento 
utilizes a bidirectional discipline. We split the typing judg
ment into two modes: Synthesis (⟹) and Checking (⟸).

a) Synthesis (⟹): In synthesis mode, the compiler gener
ates a type 𝜏  for an expression 𝑒 based on the environment Γ.

𝑥 : 𝜏 ∈ Γ
Γ ⊢ 𝑥 ⇒ {𝜈 : 𝜏 | 𝜈 = 𝑥}

Var (10)

b) Checking (⟸): In checking mode, the compiler verifies 
expression 𝑒 against a known type 𝜏 . Crucially, this allows 
for “smart” literals that adapt to their expected width.

Γ ⊢ 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝜏 ′ <: 𝜏
Γ ⊢ 𝑒 ≤ 𝜏

Subsumption (11)

K. Operational Semantics

Lento uses a call-by-value, big-step operational semantics. 
The core reduction rule for let-binding illustrates the flow-
sensitive nature of the environment update.

Γ ⊢ 𝑒1 ⇑ 𝑣1

Γ[𝑥 ↦ 𝑣1] ⊢ 𝑒2 ⇓ 𝑣2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑣2
E-Let (12)

VI. Operational Semantics

This section defines the small-step operational semantics 
of Lento using a standard evaluation relation 𝑒 → 𝑒′ over 
expressions.

stage/macro lex ∘ parse

elab

loweropt ∘ eqSatcodegen

instrument

runtune

reopt(𝜃)

compile

𝑆 𝑆ct 𝐴

𝐾𝐼𝐼⋆𝐸

𝐼pgoΠ𝜃

Fig. 4. Internal compilation pipeline with stages from source code to final 
artifact highlighted in blue

VII. Compilation

To effectively translate Lento’s high-level abstractions and 
rich type system into efficient executable code, a sophisti
cated multistage compilation process is required.

A. Overview

Including staging, elaboration, lowering, optimization, 
code generation, and profiling with feedback for re-optimiza
tion.

Interpretation:

B. Objects (nodes)

• 𝑆: Source program
• 𝑆ct: Staged/expanded source (after hygienic macros / 

MSP / const-eval)
• 𝐴: AST / syntax tree
• 𝐾: “Semantic IR” typed core calculus (post-elaboration, 

bidirectional typing, holes resolved/registered)
• 𝐼 : Mid-level IR (e.g., SSA-ish or semantic dialect)
• 𝐼⋆: Optimized IR
• 𝐸: Final artifact (object file / executable / WASM 

module)
• 𝐾spec, 𝐼spec: Specialized (partial-evaluated) variants
• 𝐼pgo: Instrumented IR
• Π: Profiling data
• 𝜃: Optimization parameters / decisions derived from (Π)

C. Morphisms (edges)

• stage/macro: Hygienic macros, MSP phase splitting, 
const-eval fragment

• lex ∘ parse: Lexer+parser
• elab: Elaboration/type inference (bidirectional) into 

core
• lower: Lowering into IR
• opt: Standard optimizations + fusion + specialization 

triggers + etc.
• eqSat/rewrite: Equality saturation / rewrite-rule en

gine for library-driven optimization
• partialEval: Specialization w.r.t. known inputs
• instrument, run, tune: PGO loop with a “pause” await

ing external execution input
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